Abstract
ABSTRACTThis article introduces an approach to assess the value and manage flexibility in engineering systems design based on decision rules and stochastic programming. The approach differs from standard Real Options Analysis (ROA) that relies on dynamic programming in that it parameterizes the decision variables used to design and manage the flexible system in operations. Decision rules are based on heuristic-triggering mechanisms that are used by Decision Makers (DMs) to determine when it is appropriate to exercise the flexibility. They can be treated similarly as, and combined with, physical design variables, and optimal values can be determined using multistage stochastic programming techniques. The proposed approach is applied as demonstration to the analysis of a flexible hybrid waste-to-energy system with two independent flexibility strategies under two independent uncertainty drivers in an urban environment subject to growing waste generation. Results show that the proposed approach recognizes the value of flexibility to a similar extent as the standard ROA. The form of the solution provides intuitive guidelines to DMs for exercising the flexibility in operations. The demonstration shows that the method is suitable to analyze complex systems and problems when multiple uncertainty sources and different flexibility strategies are considered simultaneously.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.