Abstract

In this work a polychromatic version of the generalized Lorenz–Mie theory stricto sensu (GLMT) is derived. In this new formalism, arbitrary time-dependent fields are expanded into partial waves using Bromwich scalar potentials and, instead of the usual expansion coefficients – the beam shape coefficients (BSCs) – found in the monochromatic GLMT, now one finds field shape spectra (FSSs) which are intrinsically frequency-dependent. Expressions for the incident, scattered and internal fields are presented, and it is shown how physical quantities defined and expressed in the monochromatic GLMT in terms of the BSCs are modified and redefined in terms of the FSSs in polychromatic light scattering problems, like scattered intensities and phase angles, absorption, extinction and scattering cross-sections, and radiation pressure cross-sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.