Abstract

We propose an approach to evaluate the effect on the threshold-voltage dispersion of nanoscale metal-oxide-semiconductor field-effect transistors (MOSFETs) of line-edge roughness, surface roughness, and random dopant distribution. The methodology is fully based on parameter sensitivity analysis, performed by means of a limited number of technology computer-aided design simulations or analytical modeling. We apply it to different nanoscale transistor structures, i.e., bulk 45-nm n-channel, 32-nm ultrathin-body silicon-on-insulator, and 22-nm double-gate MOSFETs. In all cases, our approach is capable of reproducing with very good accuracy the results obtained through 3-D atomistic statistical simulations at a small computational cost. We believe that the proposed approach can be a powerful tool to understand the role of the main variability sources and to explore the device design parameter space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.