Abstract

The genipin-crosslinked chitosan (GCS) nanocarrier has received a lot of attention due to its unique biological and chemical properties as an effective drug delivery system. GCS was modeled by considering two chitosan (CS) polymer sequences with six monomer units that are crosslinked by genipin. To investigate the characteristics of this model, we considered it as a nanocarrier of the anti-cancer drug cladribine (2CdA). Seven configurations of GCS and 2CdA (GCS/2CdA1-7) were optimized at M06-2X/6-31G(d,p) in aqueous solution. The average binding energy above 100 kJ mol−1 indicates a high drug loading amount. The high adsorption of the drug on GCS is due to the hydrogen bonds that were investigated by AIM analysis. Hydrogen bonds also allow the drug to be released more slowly. These results were confirmed by experimental evidence and the comparison of this model with the simple model of one polymer chain. Also, the mechanism of GCS formation was investigated by calculating the activation parameters, which indicates that solvent (H2O) molecules are explicitly involved in the formation of GCS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.