Abstract

In recent years, metamaterials (MMs) have attracted researchers due to their geometrical and structural uniqueness that make these materials to absorb, block, and enhance electromagnetic (EM) waves, which is not possible with conventional materials found in nature. These artificially engineered materials derive the EM properties (effective values of permittivity ε∼eff and permeability μ∼eff less than zero) from the shape, size, orientation, and periodicity of unit cells rather inheriting those from material composition. The study on MMs has been diversified from the radio frequency range to the optical frequency range, with potential applications in realization of novel devices such as perfect lenses, EM, and MM based microwave patch antennas. For the past few years, the concept of MMs has been widely used to develop and design metamaterial perfect absorbers (MPAs). The proposed chapter mainly focuses on the classification of materials on the basis of permittivity and permeability; MPAs; applications of MPAs; experimental demonstrations of first single-band MPAs in microwave, THz, mid-IR and near IR regimes; conditions for complete absorption of EM waves; MPA as perfectly matched layer (PML); attenuation mechanism of EM waves inside the MPA; calculation of MM parameters; measurement and testing process, followed by a case study on multi-band MPA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.