Abstract

Abstract In this study,90Sr was used as the test radionuclide to characterize the sorption kinetics and effects of initial 90Sr activity and remaining 90Sr in solid concentration were simulated for a near-surface repository. The study focused on the sorption characteristics of radionuclides in unsaturated groundwater environment (or vadose zone) is the important information for investigating the near-surface disposal of intermediate and low-level radioactive waste (ILLW). Moreover, the 90Sr sorption experiments reached equilibrium within 56 h, which fit to the first order sorption kinetic model, and the remaining 90Sr in mudrock samples showed obvious sorption equilibrium hysteresis, which fit to the second order sorption kinetic model. Before reaching the maximum sorption capacity, the sorption rate constant increases with 90Sr increasing; the distribution coefficient (Kd) of 56 h decreases with the remaining 90Sr decreasing. In addition, it showed that the slow sorption process dominated before the sorption reaches equilibrium. In fact, a reliable safety assessment methodology for on-going near-surface repository required a lot of the radionuclides parameters with local environment including the radionuclides sorption/desorption rate constant and maximum sorption capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call