Abstract
A 3D electrical resistivity imaging survey is presented in this paper. The objective was to investigate an underground wastewater system at the University of Malaya, Malaysia. Apparent resistivity data were collected along ten parallel lines using a Wenner-Schlumberger configuration; electrode cables were oriented in the x-direction with 3 m spacing. Roll-along measurements using a line spacing of 3 m were carried out covering a grid of 20 × 10 electrodes. All data sets were merged into a single data file in order to perform a 3D inversion. Two different 3D least squares algorithms, based on the robust inversion method and the smoothness-constrained technique, were used for the inversion of the apparent resistivity data. Both the horizontal and vertical extents of the anomalous zones found by inversion are displayed. The results indicate the superiority of the robust inversion method over the smoothness-constrained technique at this site. The results are in sufficient accordance with previously known information about the investigation area. The results show that 3D electrical resistivity imaging surveys, in combination with an appropriate 3D inversion method, can be highly useful for engineering and archaeological investigations as well as for environmental applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.