Abstract

Let (X, τ) be a topological space, we will denote by |X|,|X|K, |X|τ and |X|δ, the cardinalities of X; the family of compacts in X; the family of closed in X, and the family of Gδ-closed in X, respectively. The purpose of this work is to establish relationships between these four numbers and conditions under which two of them coincide or one of them is ≤ c, where c denotes, as usual, the cardinality of the set of real numbers R. We will use the Stone-Weierstrass theorem to prove that: Let (X, τ) be a compact Hausdorff topological space, then |X|δ ≤ |X|ℵ0

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.