Abstract

The Pacific Earthquake Engineering Research (PEER) Center’s Performance Based Earthquake Engineering (PBEE) framework is well documented. The framework is a linear methodology which is based upon obtaining in turn output from each of the following analyses: hazard analysis; structural analysis; loss analysis, and finally decision making based on variables of interest, such as downtime or cost to repair. The strength of the framework is in its linearity, its clear flexibility and in the consideration of uncertainty at every stage of the analysis. The framework has potential applications to other forms of extreme loading; however in order for this to be achieved the ‘mapping’ of the framework to the analysis of structures for other loading situations must be successful.This paper illustrates one such ‘mapping’ of the framework for Performance Based Fire Engineering (PBFE) of structures. Using a combination of simple analytical techniques and codified methods as well as random sampling techniques to develop a range of response records, the PEER framework is followed to illustrate its application to structural fire engineering. The end result is a successful application of the earthquake framework to fire which highlights both the assumptions which are inherent in the performance based design framework as well as subjects of future research which will allow more confidence in the design of structures for fire using performance based techniques.This article describes the PEER framework applied to structural earthquake design then follows the framework from start to completion applying suitable alternative tools to perform each stage of the analysis for structures in fire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.