Abstract
This paper uses the logic of explanatory power to address the question of uncertain decision rule classification and interpretation in rough set data analysis. A set theoretic configuration of the measure of explanatory power is introduced. The usefulness of the measure is then examined in the context of two datasets - one related to car evaluation and the other related to the provision of extra educational supports. It is found that the explanatory power measure has some interesting properties that enhance the informativeness and interpretation of non-deterministic decision rules. The result of the numerical analysis shows that the explanatory power index is unique. The index can also facilitate the establishment of an objective threshold that determines whether the explanatory relevance of the premise in a given decision rule is positive, negative, or neutral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.