Abstract

Based on the Lagarias-Odlyzko effectivization of the Chebotarev density theorem, Kumar Murty gave an effective version of the Sato-Tate conjecture for an elliptic curve conditional on analytic continuation and Riemann hypothesis for the symmetric power $L$-functions. We use Murty's analysis to give a similar conditional effectivization of the generalized Sato-Tate conjecture for an arbitrary motive. As an application, we give a conditional upper bound of the form $O((\log N)^2 (\log \log 2N)^2)$ for the smallest prime at which two given rational elliptic curves with conductor at most $N$ have Frobenius traces of opposite sign.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.