Abstract

The design and operation of synthetic aperture radars require compatible sets of hundreds of quantities. Compatibility is achieved when these quantities satisfy constraints arising from physics, geometry etc. In the aggregate these quantities and constraints form a logical model of the radar. In practice the logical model is distributed over multiple people, documents and software modules thereby becoming fragmented. Fragmentation gives rise to inconsistencies and errors. The SAR Inference Engine addresses the fragmentation problem by implementing the logical model of a Sandia synthetic aperture radar in a form that is intended to be usable from system design to mission planning to actual operation of the radar. These diverse contexts require extreme flexibility that is achieved by employing the constraint programming paradigm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.