Abstract
This paper apply an statistical technique to correct radiometric data measured by Advanced Very High Resolution Radiometers(AVHRR) onboard the National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites(POES). This paper study Normalized Difference Vegetation Index (NDVI) stability in the NOAA/NESDIS Global Vegetation Index (GVI) data for the period 1982-2003. AVHRR weekly data for the five NOAA afternoon satellites NOAA-7, NOAA-9, NOAA-11, NOAA-14, and NOAA-16 are used for the China dataset, for it includes a wide variety or different ecosystems represented globally. GVI has found wide use for studying and monitoring land surface, atmosphere, and recently for analyzing climate and environmental changes. Unfortunately the POES AVHRR data, though informative, can not be directly used in climate change studies because of the orbital drift in the NOAA satellites over these satellites' life time. This orbital drift introduces errors in AVHRR data sets for some satellites. To correct this error of satellite data, this paper implements Empirical Distribution Function (EDF) which is a statistical technique to generate error free long-term time-series for GVI data sets. It allows one to represent any global ecosystem from desert to tropical forest and to correct deviations in satellite data due to orbit degradation. The corrected datasets can be used as proxy to study climate change, epidemic analysis, and drought prediction etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.