Abstract

Let S be a non-empty subset of positive integers. A partition of a positive integer n into S is a finite nondecreasing sequence of positive integers a 1, a 2,...,a r in S with repetitions allowed such that $$\sum\limits_{i = 1}^r {a_i = n}$$ . Here we apply Polya's enumeration theorem to find the number P(n; S) of partitions of n into S, and the number DP(n; S) of distinct partitions of n into S. We also present recursive formulas for computing P(n; S) and DP(n; S).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.