Abstract

This paper addresses the problem of decomposing a numerical semigroup into $m$-irreducible numerical semigroups. The problem originally stated in algebraic terms is translated, introducing the so-called Kunz-coordinates, to resolve a series of several discrete optimization problems. First, we prove that finding a minimal $m$-irreducible decomposition is equivalent to solve a multiobjective linear integer problem. Then, we restate that problem as the problem of finding all the optimal solutions of a finite number of single objective integer linear problems plus a set covering problem. Finally, we prove that there is a suitable transformation that reduces the original problem to find an optimal solution of a compact integer linear problem. This result ensures a polynomial time algorithm for each given multiplicity $m$. We have implemented the different algorithms and have performed some computational experiments to show the efficiency of our methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.