Abstract

When assessing the quality of a system or product, it is necessary to take all responses into account and optimize them in a concurrent manner to find the factor levels that satisfy the overall system, process, or product properties to solve the robust design problem. This problem can be solved as a multi-response optimization problem. There are many methods suggested to solve this problem based on different disciplines like multi-objective optimization. In this study, we improve the theory of nondifferentiable desirability functions' optimization for which the so-called gradient-based methods are not useful. In this study, we propose an infinite programming approach for nondifferentiable desirability functions including more than one nondifferentiable point. We employed DNLP model of GAMS/BARON which is a nondifferentiable solver, however, the solution of more than one nondifferentiable point problem is resulted as infeasible. We also tested MATLAB/NOMAD which is a derivative-free solver for MINLP problems, however, MATLAB/NOMAD also did not succeed and could not solve this nondifferentiable problem. Lastly, we use a genetic algorithm that is implemented under MATLAB and it also cannot find a feasible solution. We use an example that is solved by different desirability functions approaches before and show that the desirability functions approach with more than one nondifferentiable point is a good alternative to the ones in the literature. We present the conclusion and future studies at the end of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call