Abstract

In multi-stage project investment decision-making with uncertainty, risk mitigation plays a vital role. The return on investment (ROI) that will be realised in making a particular decision quite often carries a high degree of uncertainty, with an increased number of competing investors entering to the market every day. In this research, our objective is to develop a technique for a multi-stage project investment decision problem that deals with uncertainty in ROI and complex interrelated state transition dynamics. We do this by formulating our problem as an infinite horizon stochastic dynamic programming (IHSDP) problem and solve it to maximise the total return over an infinite time horizon. We have implemented our solution to the project investment decision problem in a simple case study using three well-known stochastic dynamic programming algorithms. Our simulation results show that the IHSDP algorithms are useful in making optimum investment decisions in an uncertain business environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.