Abstract

Relay coordination is reliable and crucial to guarantee that healthy feeders are properly isolated from the defective areas in a microgrid network. An appropriate protection scheme must be properly planned during the design of the microgrid to ensure safety for the power components in the event of a failure. The implementation of distributed generators in the microgrid changes the total network’s Load-Flow and often impacts the magnitude and direction of the fault current. Using the nature-inspired novel evaporation-rate-based water cycle algorithm (ERWCA), the enhancement in microgrid protection is accomplished in this work by optimizing the relay settings, reducing their operation time and time dial setting of each relay. The approach proposed is validated with the IEC microgrid benchmark system and the findings are contrasted with current techniques. It is found that the proposed strategy produces substantial improvement for the microgrid in the application of over-current relays and greatly reduces the relays’ overall net operating time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.