Abstract

Depression is a major societal issue. However, depression can be hard to self-diagnose, and people suffering from depression often hesitate to consult with professionals. We discuss the design and initial testings of our prototype application that performs depression detection using multi-modal information such as questionnaires, speech, and face landmarks. The application has an animated avatar ask questions concerning the users’ well-being. To perform screening, we opt for a 2-stage method which first predicts individual HAM-D ratings for better explainability, which may help facilitate the referral process to medical professionals if required. Initial results show that our system archives 0.85 Marco-F1 for the depression detection task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.