Abstract

It is widely accepted that after the first cortical visual area, V1, a series of stages achieves a representation of complex shapes, such as faces and objects, so that they can be understood and recognized. A major challenge for the study of complex shape perception has been the lack of a principled basis for scaling of the physical differences between stimuli so that their similarity can be specified, unconfounded by early-stage differences. Without the specification of such similarities, it is difficult to make sound inferences about the contributions of later stages to neural activity or psychophysical performance. A Web-based app is described that is based on the Malsburg Gabor-jet model (Lades et al., 1993), which allows easy specification of the V1 similarity of pairs of stimuli, no matter how intricate. The model predicts the psycho physical discriminability of metrically varying faces and complex blobs almost perfectly (Yue, Biederman, Mangini, von der Malsburg, & Amir, 2012), and serves as the input stage of a large family of contemporary neurocomputational models of vision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call