Abstract

We describe a high-temperature, uniaxial creep apparatus designed to investigate nonlinear attenuation of materials over a wide range of temperatures (25-1300°C) using forced oscillations combined with a bias stress. This apparatus is primarily designed for investigation of minerals and rocks with high melting temperatures. An oscillatory compressional stress is used to determine attenuation and Young's modulus at frequencies of 10-1-102Hz and high stress amplitudes (>0.1 MPa). Large bias stresses are applied in addition to the oscillatory stresses such that attenuation tests are conducted simultaneously with the ongoing creep. The complex compliance of the apparatus was characterized by conducting calibration tests on orientated crystals of sapphire. The real part of the apparatus compliance exhibits a dependence on sample length and frequency, whereas the imaginary part is only dependent on frequency. The complex compliance is not dependent on the oscillation amplitude or the bias stress. We assess the accuracy and precision of this calibration by comparing measurements of the attenuation and Young's modulus of aluminum and acrylic to previously published values. We outline a set of criteria defining the conditions over which this apparatus can precisely determine the attenuation and Young's modulus of a sample based on the sample length and expected values of attenuation and Young's modulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.