Abstract

The first intron of the human Pro alpha 1(I) collagen gene contains an orientation-dependent enhancer composed of both positive and negative cis-acting elements involved in the transcriptional regulation of this gene. Deletion of a 360 bp Sau 3A intronic fragment spanning nucleotide +494 to +854 (S360) resulted in dramatic down-regulation of pCOL-KT (Thompson et al., J Biol Chem 266: 2549-2556, 1991). Using a DNaseI protection assay, we demonstrate a single footprint located at +590 to +615 in the S360 fragment; nuclear extracts prepared from mesenchymal and nonmesenchymal cells exhibited similar binding characteristics. A double stranded oligonucleotide representing a consensus Ap-1 binding sequence competed with S360 for binding. In contrast to what occurred in response to S360 deletion which was always accompanied by reduced expression, the deletion of the Ap-1 binding site (+598 to +off) caused either increased or decreased expression of the reporter gene depending on the target cell. Site-directed mutations in the Ap-1-like cis-element of Pro alpha 1(I) were also tested in transient expression assays. Consistent with the paradoxical results of Ap-1 deletion, we observed that the functional consequences of mutations in the Ap-1 site also varied in different cells. In A204 cells, one point mutation, which resulted in the loss of protein binding to S360, led to increased CAT activity while another point mutant, which retained binding of the Ap-1 like trans-acting factor(s), showed decreased CAT expression. The effects of these two mutations in the HFL-1 cells were exactly opposite of what was seen for A204 cells. Based on these observations, we postulate that the Ap-1 site plays a critical role in the transcriptional activity of the human Pro alpha 1(I) gene. The implications of an apparently dual mode of regulation through a single cis-regulatory element are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.