Abstract

Dual- or multi-action PtIV prodrugs represent a new generation of platinum anticancer drugs. The important property of these PtIV prodrugs is that their antitumor action combines several different mechanisms owing to the presence of biologically active axial ligands. This work describes the synthesis and some biological properties of a "triple-action" prodrug that releases in cancer cells cisplatin and two different epigenetically acting moieties, octanoate and phenylbutyrate. It is demonstrated, with the aid of modern methods of molecular and cellular biology and pharmacology, that the presence of three different functionalities in a single molecule of the PtIV prodrug results in a selective and high potency in tumor cells including those resistant to cisplatin [the IC50 values in the screened malignant cell lines ranged from as low as 9 nm (HCT-116) to 74 nm (MDA-MB-231)]. It is also demonstrated that cellular activation of the PtIV prodrug results in covalent modification of DNA through the release of the platinum moiety accompanied by inhibition of the activity of histone deacetylases caused by phenylbutyrate and by global hypermethylation of DNA by octanoate. Thus, the PtIV prodrug introduced in this study acts as a true "multi-action" prodrug, which is over two orders of magnitude more active than clinically used cisplatin, in both 2D monolayer culture and 3D spheroid cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.