Abstract

The diagnosis of Systemic Lupus Erythematosus (SLE) is challenging due to its heterogeneous clinical presentation and the lack of robust biomarkers to distinguish it from other autoimmune diseases. Further, currently used laboratory tests do not readily distinguish active and inactive disease. Several groups have attempted to apply emerging high throughput profiling technologies to diagnose and monitor SLE. Despite showing promise, many are expensive and technically challenging for routine clinical use. The goal of this work is to develop a better diagnostic and monitoring tool for SLE. We report a highly customisable antibody microarray that consists of a duplicate arrangement of 82 antibodies directed against surface antigens on peripheral blood mononuclear cells (PMBCs). This high-throughput array was used to profile SLE patients (n = 60) with varying disease activity, compared to healthy controls (n = 24), patients with rheumatoid arthritis (n = 25), and other autoimmune diseases (n = 28). We used a computational algorithm to calculate a score from the entire microarray profile and correlated it with SLE disease activity. Our results demonstrate that leukocyte-capture microarray profiles can readily distinguish active SLE patients from healthy controls (AUROC = 0.84). When combined with the standard laboratory tests (serum anti-dsDNA, complements C3 and C4), the microarrays provide significantly increased discrimination. The antibody microarrays can be enhanced by the addition of other markers for potential application to the diagnosis and stratification of SLE, paving the way for the customised and accurate diagnosis and monitoring of SLE.

Highlights

  • Systemic Lupus Erythematosus (SLE) is an immune-mediated, multisystem, inflammatory disease characterised by autoantibody production

  • Several laboratory measurements, such as serum complement C3 and C4 levels, anti-dsDNA antibody titers and erythrocyte sedimentation rate (ESR) are routinely used in the clinic to help with disease management, individually they are not diagnostic of SLE and do not on their own give an accurate indication of disease activity

  • Another important observation was that, many of these cluster of differentiation (CD) antigens have statistically significant associations with the disease, none are good biomarkers of SLE activity because the Area Under the Receiver Operating Characteristic (AUROC) values are not sufficiently high (,0.85), and do not positively correlate with disease activity. This indicates that no CD antigen alone, as measured by our antibody microarray, can be used as a reliable biomarker for monitoring the activity of SLE

Read more

Summary

Introduction

Systemic Lupus Erythematosus (SLE) is an immune-mediated, multisystem, inflammatory disease characterised by autoantibody production. Its diagnosis relies on identification of combinations of clinical features and laboratory tests to distinguish it from other autoimmune disorders [1] This is often problematic in clinical practice as some of the features required to fulfill the diagnostic criteria may take years to develop and some individuals with pathognomonic features do not meet all the established criteria. The development of reliable biomarkers would enable us to distinguish between SLE and other autoimmune or infective conditions with similar clinical presentations, and would assist in the diagnosis and management of the condition. Such markers would ideally stratify the condition, predict flares, determine disease severity and activity, and response to therapy, and thereby limit unnecessary investigation and exposure to the side effects of immunosuppressive agents

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call