Abstract

Refractory T cell acute leukaemias that no longer respond to treatment would benefit from new modalities that target T cell-specific surface proteins. T cell associated surface proteins (the surfaceome) offer possible therapy targets to reduce tumour burden but also target the leukaemia-initiating cells from which tumours recur. Recent studies of the T cell leukaemia surfaceome confirmed that CD7 is highly expressed in overt disease. We have used an anti-CD7 antibody drug conjugate (ADC) to show that the binding of antibody to surface CD7 protein results in rapid internalization of the antigen together with the ADC. As a consequence, cell killing was observed via induction of apoptosis and was dependent on cell surface CD7. The in vitro cytotoxic activity (EC50) of the anti-CD7 ADC on T cell acute leukaemia (T-ALL) cells Jurkat and KOPT-K1 was found to be in the range of 5−8 ng/mL. In a pre-clinical xenograft model of human tumour growth expressing CD7 antigen, growth was curtailed by a single dose of ADC. The data indicate that CD7 targeting ADCs may be developed into an important second stage therapy for T cell acute leukaemia, for refractory CD7-positive leukaemias and for subsets of acute myeloid leukaemia (AML) expressing CD7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.