Abstract

The limited availability of bioinks has hindered the application of 3D bioprinting to tissue engineering, and bacterial infection is a serious threat to these applications. Aiming to solve this problem, a novel ε-poly-L-lysine (EPL)-derived antibacterial bioink has been developed for 3D bioprinting and tissue-engineering applications. Three glycidyl methacrylate (GMA)-modified EPL products, EPLGMA-1, EPLGMA-2, and EPLGMA-3, were prepared by reacting 3, 4, and 5 mL GMA with 5 g EPL, respectively. EPLGMA-1, EPLGMA-2, and EPLGMA-3 were photocurable and their corresponding photo-crosslinked hydrogels, EPLGMA-1H, EPLGMA-2H, and EPLGMA-3H, all exhibited very high antibacterial rates, good biocompatibility, good degradability, and promising mechanical properties. After EPLGMA-1H, EPLGMA-2H, and EPLGMA-3H with encapsulated chondrocytes were incubated for 4 weeks, EPLGMA-3H was the best one among them for tissue-engineering applications due to its most efficient tissue regeneration. Carrying chondrocytes, the EPLGMA-3 solution was printed into hydrogel products with high-fidelity shapes and high cell viability using a projection-based 3D bioprinter. Following the implantation of chondrocyte-loaded EPLGMA-3H samples into nude mice for 4 weeks, cartilage-like tissue was regenerated, suggesting that EPLGMA-3 is a promising antibacterial bioink for 3D bioprinting and tissue-engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.