Abstract

BackgroundCurrent validated neonatal body composition methods are limited/impractical for use outside of a clinical setting because they are labor intensive, time consuming, and require expensive equipment. The purpose of this study was to develop an anthropometric model to estimate neonatal fat mass (kg) using an air displacement plethysmography (PEA POD® Infant Body Composition System) as the criterion.MethodsA total of 128 healthy term infants, 60 females and 68 males, from a multiethnic cohort were included in the analyses. Gender, race/ethnicity, gestational age, age (in days), anthropometric measurements of weight, length, abdominal circumference, skin-fold thicknesses (triceps, biceps, sub scapular, and thigh), and body composition by PEA POD® were collected within 1-3 days of birth. Backward stepwise linear regression was used to determine the model that best predicted neonatal fat mass.ResultsThe statistical model that best predicted neonatal fat mass (kg) was: -0.012 -0.064*gender + 0.024*day of measurement post-delivery -0.150*weight (kg) + 0.055*weight (kg)2 + 0.046*ethnicity + 0.020*sum of three skin-fold thicknesses (triceps, sub scapular, and thigh); R2 = 0.81, MSE = 0.08 kg.ConclusionsOur anthropometric model explained 81% of the variance in neonatal fat mass. Future studies with a greater variety of neonatal anthropometric measurements may provide equations that explain more of the variance.

Highlights

  • Current validated neonatal body composition methods are impractical for use outside of a clinical setting because they are labor intensive, time consuming, and require expensive equipment

  • All anthropometric measurements were similar between male and female infants; male infants had greater average birth weight and length and lower average percent body fat compared to female infants

  • In this study we evaluated the ability of anthropometric measurements to predict neonatal body fat as measured by the PEA POD®, an infant-sized air displacement plethysmography system, in a multiethnic population of term infants

Read more

Summary

Introduction

Current validated neonatal body composition methods are limited/impractical for use outside of a clinical setting because they are labor intensive, time consuming, and require expensive equipment. The purpose of this study was to develop an anthropometric model to estimate neonatal fat mass (kg) using an air displacement plethysmography (PEA POD® Infant Body Composition System) as the criterion. Current validated neonatal body composition methods are impractical for use outside of a clinical setting because they are labor intensive, time consuming, and require expensive equipment. The PEA POD® Infant Body Composition System is an infant-sized air displacement plethysmography system that directly measures infant body weight and volume and uses these values to derive body fat percentage, fat mass, and fat-free mass [5] This system has been validated in infants against the gold standard four compartment model [6] and deuterium dilution [7].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call