Abstract
Multi-objective shortest path problem (MOSP) is an extension of a traditional single objective shortest path problem that seeks for the efficient paths satisfying several conflicting objectives between two nodes of a network. MOSP is one of the most important problems in network optimization with wide applications in telecommunication industries, transportation and project management. This research presents an algorithm based on multi-objective ant colony optimization (ACO) to solve the bi-objective shortest path problem. To analyze the efficiency of the algorithm and check for the quality of solutions, experimental analyses are conducted. Two sets of small and large sized problems that generated randomly are solved. Results on the set problems are compared with those of label correcting solutions that is the most known efficient algorithm for solving MOSP. To compare the Pareto optimal frontiers produced by the suggested ACO algorithm and the label correcting algorithm, some performance measures are employed that consider and compare the distance, uniformity distribution and extension of the Pareto frontiers. The results on the set of instance problems show that the suggested algorithm produces good quality non-dominated solutions and time saving in computation of large-scale bi-objective shortest path problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.