Abstract

The problem of scheduling in flowshops with sequence-dependent setup times of jobs is considered and solved by making use of ant colony optimization (ACO) algorithms. ACO is an algorithmic approach, inspired by the foraging behavior of real ants, that can be applied to the solution of combinatorial optimization problems. A new ant colony algorithm has been developed in this paper to solve the flowshop scheduling problem with the consideration of sequence-dependent setup times of jobs. The objective is to minimize the makespan. Artificial ants are used to construct solutions for flowshop scheduling problems, and the solutions are subsequently improved by a local search procedure. An existing ant colony algorithm and the proposed ant colony algorithm were compared with two existing heuristics. It was found after extensive computational investigation that the proposed ant colony algorithm gives promising and better results, as compared to those solutions given by the existing ant colony algorithm and the existing heuristics, for the flowshop scheduling problem under study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.