Abstract
We describe a general procedure for translating Epistemic Probabilistic Event Calculus (EPEC) action language domains into Answer Set Programs (ASP), and show how the Python-driven features of the ASP solver Clingo can be used to provide efficient computation in this probabilistic setting. EPEC supports probabilistic, epistemic reasoning in domains containing narratives that include both an agent's own action executions and environmentally triggered events. Some of the agent's actions may be belief-conditioned, and some may be imperfect sensing actions that alter the strengths of previously held beliefs. We show that our ASP implementation can be used to provide query answers that fully correspond to EPEC's own declarative, Bayesian-inspired semantics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.