Abstract

Clustering–the tendency for neighbors of nodes to be connected–quantifies the coupling of a complex network to its latent metric space. In random geometric graphs, clustering undergoes a continuous phase transition, separating a phase with finite clustering from a regime where clustering vanishes in the thermodynamic limit. We prove this geometric to non-geometric phase transition to be topological in nature, with anomalous features such as diverging entropy as well as atypical finite-size scaling behavior of clustering. Moreover, a slow decay of clustering in the non-geometric phase implies that some real networks with relatively high levels of clustering may be better described in this regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call