Abstract

Physical properties of materials are mainly determined by valence electron configurations, where different valence shells would induce divergent phenomena. In compounds containing Sc2+ , 3d electron occupancy is expected, the same as other transition metal atoms like Ti3+ . But this situation still awaits experimental verification in inorganic materials. Here, we selected ScS to measure the valence electron density and orbital population of Sc2+ through delicate quantitative convergent-beam electron diffraction. With the absence of 3d orbital features around Sc-atom sites and the nearly bare population of t2g orbital, the unintuitive occupation of 4s orbital in Sc2+ is concluded. It should be the first time to report such a special electron configuration in a transition metal compound, in which 4s rather than 3d orbital is preferred. Our findings reveal the distinct behavior of Sc and probable ways to modulate material properties by controlling electron orbitals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call