Abstract

Medical ultrasound images are usually degraded by a specific type of noise, called speckle. The presence of speckle noise in medical ultrasound images will reduce the image quality and affect the effective information, which can potentially cause a misdiagnosis. Therefore, medical image enhancement processing has been extensively studied and several denoising approaches have been introduced and developed. In the current work, a robust fractional partial differential equation (FPDE) model based on the anomalous diffusion theory is proposed and used for medical ultrasound image enhancement. An efficient computational approach based on a combination of a time integration scheme and localized meshless method in a domain decomposition framework is performed to deal with the model. {In order to evaluate the performance of the proposed de-speckling approach, it is used for speckle noise reduction of a synthetic ultrasound image degraded by different levels of speckle noise. The results indicate the superiority of the proposed approach in comparison with classical anisotropic diffusion denoising model (Catt$acute{e}$'s pde model).}

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call