Abstract
We present a machine vision-based database named GrainSet for the purpose of visual quality inspection of grain kernels. The database contains more than 350K single-kernel images with experts’ annotations. The grain kernels used in the study consist of four types of cereal grains including wheat, maize, sorghum and rice, and were collected from over 20 regions in 5 countries. The surface information of each kernel is captured by our custom-built device equipped with high-resolution optic sensor units, and corresponding sampling information and annotations include collection location and time, morphology, physical size, weight, and Damage & Unsound grain categories provided by senior inspectors. In addition, we employed a commonly used deep learning model to provide classification results as a benchmark. We believe that our GrainSet will facilitate future research in fields such as assisting inspectors in grain quality inspections, providing guidance for grain storage and trade, and contributing to applications of smart agriculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.