Abstract

An anisotropic multiphysics damage model is developed to characterize the couplings among multiple physical fields within soft tissues and the tissue damage based on thermodynamic principles. This anisotropic multiphysics damage model integrates the continuum mixture theory and a continuum damage model, and the anisotropic damage is considered by evolution of internal damage variables governing the anisotropic mechanical behaviors of tissues. The energy dissipation associated with the transport of fluid and ions is generally related to tissue damage. The anisotropic multiphysics damage model is applied to simulate a case of annulus fibrosus (AF) damage in an isolated intervertebral disc under compression, to understand the damage initiation and propagation. It is found that, for this case (with 1000N/s of compression rate and neglected ground matrix damage), the damage initiated in the outer and middle posterior regions of AF at about 700N of axial compression. The region-dependent yield stretch ratio predicted by this model is consistent with experimental findings. A sensitive study on the damage parameters is also presented. This study provides an additional insight into AF damage in the isolated disc under mechanical compression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.