Abstract

An efficient finite-difference method for solving the isotropic Helmholtz equation relies on a discretization scheme and an appropriate solver. Accordingly, we have adopted an average-derivative optimal scheme that has two advantages: (1) it can be applied to unequal directional sampling intervals and (2) it requires less than four grid points of sampling per wavelength. Direct methods are not of interest for industry-sized problems due to the high memory requirements; Krylov subspace methods such as the biconjugate gradient stabilized method and the flexible generalized minimal residual method that combine a multigrid-based preconditioner are better alternatives. However, standard geometric multigrid algorithms fail to converge when there exist unequal directional sampling intervals; this is called anisotropic grids in terms of the multigrid. We first review our previous research on 2D anisotropic grids: the semicoarsening strategy, line-wise relaxation operator, and matrix-dependent interpolation were used to modify the standard V-cycle multigrid algorithms, resulting in convergence. Although directly extending to the 3D case by substituting line relaxation for plane relaxation deteriorates the convergence rate considerably, we then find that a multilevel generalized minimal residual preconditioner-combined semicoarsening strategy is more suitable for anisotropic grids and the convergence rate is faster in the 2D and 3D cases. The results of the numerical experiments indicate that the standard geometric multigrid does not work for anisotropic grids, whereas our method demonstrates a faster convergence rate than the previous method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call