Abstract

Evolutionary processes in biological tissue, such as adaptation or remodeling, represent an enterprising area of research. In this paper, we present a multiscale model for the remodeling of fibered structures, such as bundles of collagen fibrils. With this aim, we introduce a von Mises statistical distribution function to account for the directional dispersion of the fibrils, and we remodel the underlying fibrils by changing their orientation. To numerically compute this process, we make use of the microsphere approach, which provides a useful multiscale tool for homogenizing the microstructure behavior, related to the fibrils of the bundle, in the macroscale of the problem. The results show how the fibrils respond to the stimulus by reorientation of their structure. This process leads to a stiffer material eventually reaching a stationary state. These results are in agreement with those reported in the literature, and they characterize the adaptation of biological tissue to external stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.