Abstract

A bacterial strain, Rhodococcus sp. WH99, capable of degrading phenazine-1-carboxylic acid (PCA) was isolated and characterized. Genome comparison revealed that a 21499-bp DNA fragment containing a putative angular dioxygenase gene cluster consisting of the dioxygenase-, ferredoxin reductase- and ferredoxin-encoding genes (pzcA1A2, pzcC and pzcD) is missed in the PCA degradation-deficient mutant WH99M. The pzcA1A2CD genes were expressed in Escherichia coli respectively and hydroxylation of PCA to 1,2-dihydroxyphenazine occurred in vitro only when all components were present. However, in vivo analyses showed that pzcA1A2 and pzcD were indispensable for PCA degradation, while PzcC can be partially replaced by other ferredoxin reductases. Hydroxylation of PCA not only initiates degradation of PCA in strain WH99 but also provides protection to sensitive organisms that would otherwise be inhibited by PCA toxicity. This study illustrates a new initial PCA degradation step in Gram-positive bacteria and enhances our understanding of the genes responsible for PCA hydroxylation, thus enabling targeted studies on protection by PCA degradation in diverse environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call