Abstract
We introduce a new notion of an angle between intermediate subfactors and prove various interesting properties of the angle and relate it to the Jones index. We prove a uniform 60 60 to 90 90 degree bound for the angle between minimal intermediate subfactors of a finite index irreducible subfactor. From this rigidity we can bound the number of minimal (or maximal) intermediate subfactors by the kissing number in geometry. As a consequence, the number of intermediate subfactors of an irreducible subfactor has at most exponential growth with respect to the Jones index. This answers a question of Longo’s published in 2003.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.