Abstract

Neural progenitor cells (NPCs) have the potential to survive brain ischemia and participate in neurogenesis after stroke. However, it is not clear how survival responses are initiated in NPCs. Using embryonic mouse NPCs and the in vitro oxygen and glucose deprivation (OGD) model, we found that angiopoietin-1 (Ang1) could prevent NPCs from OGD-induced apoptosis, as evidenced by terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling and annexin V labeling. Ang1 significantly elevated tunica intima endothelial kinase 2 (Tie2) autophosphorylation level, suggesting the existence of functional Tie2 receptors on NPCs. NPCs under OGD conditions exhibited reduction of Akt phosphorylation, decrease of the Bcl-2/Bax ratio, activation of caspase-3, cleavage of PARP, and downregulation of β-catenin and nestin. Ang1 reversed the above changes concomitantly with significant rising of survival rates of NPCs under OGD, but all these effects of Ang1 could be blocked by either soluble extracellular domain of Tie2 Fc fusion protein (sTie2Fc) or the phosphoinositide 3-kinase (PI3K) inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one (LY294002). Our findings suggest the existence of an Ang1–Tie2–PI3K signaling axis that is essential in initiation of survival responses in NPCs against cerebral ischemia and hypoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.