Abstract

Morphological studies in rodents have well documented the masculinization of the perinatal brain by estradiol derived from aromatized testosterone, and the resulting irreversible quantitative sex-differences generated in cell numbers or expression of chemical phenotypes. Here, using immunohistochemistry, we explored how this applies to the postnatal development and masculinization of the neurokinin B (NKB)-containing system of the arcuate nucleus/median eminence complex (ARC/ME). In adult rats, NKB-immunoreactive neurons exhibit an unusual, qualitative sexual dimorphism of their ventral axonal projections: to the neuropil in females, to capillary vessels in males. In adults, there was no sex-difference in the numbers of NKB-immunoreactive perikarya or capillary vessels in the ARC/ME, suggesting that this sexual dimorphism cannot be explained by the existence of supernumerary structures. At birth (day 0) the NKB system was immature in both sexes, and while its adult features emerged progressively until puberty in females, they did not develop before puberty (day 40) in males, revealing a sexual dimorphism only late postnatally. When males were orchidectomized at day 30, the masculine distribution of NKB-immunoreactive axons expected at day 40 was not seen, while it was apparent after chronic treatment with testosterone or dihydrotestosterone, suggesting a testicular masculinizing action via androgen receptors at puberty. Moreover in these prepubertal-orchidectomized males, the distribution of NKB-immunoreactive axons was surprisingly feminized by chronic estradiol alone, suggesting that NKB neurons are not irreversibly programmed before puberty. Last, in adult females, the distribution of NKB-immunoreactive axons was feminine 30 days after ovariectomy, and it was masculinized after concurrent chronic dihydrotestosterone, suggesting that NKB neurons remain responsive to androgens late in reproductive life.Thus, the sexual differentiation of the hypothalamus proceeds well beyond the perinatal period and includes the epigenetic action of non-aromatizable androgens upon subsets of neurons that have retained bipotent features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.