Abstract

Sanskrit character and number documents have a lot of errors. Correcting those errors using conventional spell-checking approaches breaks down due to the limited vocabulary. This is because of high inflexions of Sanskrit, where words are dynamically formed by Sandhi rules, Samasa rules, Taddhita affixes, etc. Therefore, correcting OCR documents require huge efforts. Here, we can present different machine learning approaches and various ways to improve features for ameliorating the error corrections in Sanskrit documents. Simulation of Sanskrit dictionary for synthesizing off-the-shelf dictionary can be done. Most of the proposed methods can also work for general Sanskrit word corrections and Hindi word corrections. Handwriting recognition in Indic scripts, like Devanagari, is very challenging due to the subtitles in the scripts, variations in rendering and the cursive nature of the handwriting. Lack of public handwriting datasets in Indic scripts has long stymied the development of offline handwritten word recognizers and made comparison across different methods a tedious task in the field. In this paper, a new handwritten word dataset will be released for Devanagari, IIIT-HW-Dev to alleviate some of these issues. This process is required for successful training of deep learning architecture, availability of huge amounts of training data is crucial, as any typical architecture contains millions of parameters. A new method for the classification of freeman chain code using four-connectivity and eight-connectivity events with deep learning approach is presented. Application of CNN LeNet-5 is found to be suitable to get results in this cases as the numbers are formed with curved lines In contrast with the existing FCC event data analysis techniques, sampled grey images of the existing events are not used, but image files of the three-phase PQ event data are analysed by taking the advantage of the success of the deep learning approach on imagefile-classification. Therefore, the novelty of the proposed approach is that image files of the voltage waveforms of the three phases of the power grid are classified. It is shown that the test data can be classified with 100% accuracy. The proposed work is believed to serve the needs of the future smart grid applications, which are fast and taking automatic countermeasures against potential PQ events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.