Abstract

In all phototrophic organisms, the photosynthetic apparatus must be protected from light-induced damage. One important mechanism that mitigates photodamage in plants is antimycin A (AA)-sensitive cyclic electron flow (CEF), the evolution of which remains largely obscure. Here we show that proton gradient regulation 5 (PGR5), a key protein involved in AA-sensitive CEF, displays intriguing commonalities - including sequence and structural features - with a group of ferritin-like proteins. We therefore propose that PGR5 may originally have been involved in prokaryotic iron mobilization and delivery, which facilitated a primordial type of CEF as a side effect. The abandonment of the bacterioferritin system during the transformation of cyanobacterial endosymbionts into chloroplasts might have allowed PGR5 to functionally specialize in CEF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.