Abstract

Humans show various responses to the environmental stimulus in individual levels as “physiological variations.” However, it has been unclear if these are caused by genetic variations. In this study, we examined the association between the physiological variation of response to light-stimulus and genetic polymorphisms. We collected physiological data from 43 subjects, including light-induced melatonin suppression, and performed haplotype analyses on the clock genes, PER2 and PER3, exhibiting geographical differentiation of allele frequencies. Among the haplotypes of PER3, no significant difference in light sensitivity was found. However, three common haplotypes of PER2 accounted for more than 96% of the chromosomes in subjects, and 1 of those 3 had a significantly low-sensitive response to light-stimulus (P < 0.05). The homozygote of the low-sensitive PER2 haplotype showed significantly lower percentages of melatonin suppression (P < 0.05), and the heterozygotes of the haplotypes varied their ratios, indicating that the physiological variation for light-sensitivity is evidently related to the PER2 polymorphism. Compared with global haplotype frequencies, the haplotype with a low-sensitive response was more frequent in Africans than in non-Africans, and came to the root in the phylogenetic tree, suggesting that the low light-sensitive haplotype is the ancestral type, whereas the other haplotypes with high sensitivity to light are the derived types. Hence, we speculate that the high light-sensitive haplotypes have spread throughout the world after the Out-of-Africa migration of modern humans.

Highlights

  • Circadian rhythms, as endogenous self-sustained oscillations of a period of approximately 24 hours, are synchronized with a 24-hour cycle of the external environment by the circadian clock system which accesses light-dark information [1,2]

  • Our genetic analysis on the subjects with physiological data revealed that the individual variations in the physiological reaction for light-stimulus are significantly associated with the PER2 polymorphisms

  • The internal circadian rhythm is generated by the autoregulatory transcriptional negative-feedback loop of clock gene expression, and maintained even in constant darkness artificially provided in an experimental laboratory [59]

Read more

Summary

Introduction

As endogenous self-sustained oscillations of a period of approximately 24 hours, are synchronized with a 24-hour cycle of the external environment by the circadian clock system which accesses light-dark information [1,2]. The light information received by the retina is carried through the retinohypothalamic tract to the brain, and causes various biological reactions in humans, for instance, phase response of circadian rhythms [3], alerting effects of light [4], pupillary reflex [5], suppression of melatonin secretion [6], and cognitive brain function [7]. These reactions caused by light are termed “non-image-forming” responses [8]. Genetic factors causing these variations are still not well known; as well as any other physiological variations in humans, it has been thought that the variation of light sensitivity based on melatonin suppression is attributed largely to a plastic change without genetic programming [16]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.