Abstract
Coronary artery segmentation is critical for coronary artery disease diagnosis but challenging due to its tortuous course with numerous small branches and inter-subject variations. Most existing studies ignore important anatomical information and vascular topologies, leading to less desirable segmentation performance that usually cannot satisfy clinical demands. To deal with these challenges, in this paper we propose an anatomy- and topology-preserving two-stage framework for coronary artery segmentation. The proposed framework consists of an anatomical dependency encoding (ADE) module and a hierarchical topology learning (HTL) module for coarse-to-fine segmentation, respectively. Specifically, the ADE module segments four heart chambers and aorta, and thus five distance field maps are obtained to encode distance between chamber surfaces and coarsely segmented coronary artery. Meanwhile, ADE also performs coronary artery detection to crop region-of-interest and eliminate foreground-background imbalance. The follow-up HTL module performs fine segmentation by exploiting three hierarchical vascular topologies, i.e., key points, centerlines, and neighbor connectivity using a multi-task learning scheme. In addition, we adopt a bottom-up attention interaction (BAI) module to integrate the feature representations extracted across hierarchical topologies. Extensive experiments on public and in-house datasets show that the proposed framework achieves state-of-the-art performance for coronary artery segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.