Abstract

This paper describes an analytically based method for modeling the time-dependent radionuclide areal densities of contaminated soil surface layers when the soil experiences simultaneous leaching, surface erosion and chain radioactive decay. The model is used to predict time-dependent radionuclide areal densities in a volcanic ash blanket contaminated with spent nuclear fuel particles for the purpose of assessing the risks of radiation exposure from an extrusive volcanic event near a proposed high-level waste repository at Yucca Mountain. The method uses general analytical solutions (an expansion of the Bateman equations) for calculating serial decay, including non-radioactive decay loss terms, in order to calculate time-dependent radionuclide areal densities in the ash blanket. In the presented example, 43 "key" radionuclides are tracked and their concentrations in the blanket are displayed for a 10,000-y time period following the volcanic event. Although the analysis presented herein is for modeling contaminated volcanic ash blankets, the model would work equally well for modeling time-dependent radionuclide contamination of land surfaces in, for example, site decommissioning. It is suggested that the general solutions for serial decay (with non-radioactive decay loss terms) can also be used to model the release of radionuclides from the waste packages under anticipated repository conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.