Abstract

Short-channel effects on the subthreshold behavior are modeled in self-aligned gate MESFETs with undoped substrates through an analytical solution of the two-dimensional Poisson equation in the subthreshold region. Based on the resultant potential solution, simple and accurate analytical expressions for short-channel threshold voltage, subthreshold swing, and subthreshold drain current are derived. These are then used to develop an expression for minimum acceptable channel length. A comparative study of the short-channel effects in MESFETs with doped and undoped substrates indicates that channel lengths will be limited to 0.15-0.2 mu m by subthreshold conduction. Besides offering insight into the device physics of the short-channel effects in MESFETs, the model provides a useful basis for accurate analysis and simulation of small-geometry GaAs MESFET digital circuits. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call