Abstract

Four-terminal transducers can be used to measure the magnetic field via the Hall effect or the mechanical stress via the piezoresistance effect. Both effects are described by an anisotropic conductivity tensor with small offdiagonal elements. This has led other authors to the conclusion that there is some kind of analogy. In both cases the output voltage depends on the geometry of the device and the size of the contacts. For Hall plates this influence is accounted for by the Hall-geometry factor. The alleged analogy proposes that the Hall-geometry factor also applies to four-terminal stress transducers. This paper shows that the analogy holds only for a limited class of devices. Moreover, it is shown that devices of different geometries may have identical magnetic field sensitivity but different mechanical stress sensitivities. Thus, shape optimization makes sense for mechanical stress sensors. In extreme cases the output voltages of vertical Hall-effect devices may have notable magnetic field sensitivity but zero mechanical stress sensitivity. As byproduct, exact analytical formulae for the equivalent resistor circuit of rectangular and circular devices with two perpendicular mirror symmetries are given. They allow for an accurate description of how mechanical stress and deformation affect the output offset voltage and the magnetic sensitivity of Hall-effect devices.

Highlights

  • Resistive devices with four terminals have been proposed as mechanical stress sensors for a long time[1, 2]

  • The very same phenomenon is observed in Hall plates at zero magnetic field, where the zero-point error (= initial offset error prior to spinning current scheme [5]) is very sensitive to mechanical stress

  • Thereby we use the affine transformation of van der Pauw [8] in order to replace the original device having anisotropic resistivity by an equivalent device having isotropic conductivity. For these devices with isotropic conductivity we compute the equivalent resistor circuit (ERC), which describes the behavior of the devices under the action of mechanical stress and magnetic field

Read more

Summary

Introduction

Resistive devices with four terminals have been proposed as mechanical stress sensors for a long time[1, 2]. Thereby we use the affine transformation of van der Pauw [8] in order to replace the original device having anisotropic resistivity by an equivalent device having isotropic conductivity. For these devices with isotropic conductivity we compute the equivalent resistor circuit (ERC), which describes the behavior of the devices under the action of mechanical stress and magnetic field. Advances in Condensed Matter Physics crystals, like silicon With these formulae it becomes apparent that vertical Hall-effect devices are very slightly affected by mechanical stress.

Similarities of Piezoresistance and Hall Effect
The Affine Transformation
Offset-Free Circular Devices with Point-Sized Contacts at
Comparison with Other Authors
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.