Abstract

The estimation of tension loads in multi-tendon continuum robots or catheters plays an important role not only in the design process but also in the control algorithm to avoid slack. An analytical tension loading model is developed that, for any given beam configuration within the workspace, calculates tendon tensions in [Formula: see text]-tendon continuum robots with general tendon positioning. The model accounts for the bending and axial compliance of the manipulator as well as tendon compliance. A 6-tendon continuum robot integrated with a stereo vision-based 3D reconstruction system is utilized to experimentally validate the proposed analytical model in open-loop control architecture. The proposed model demonstrates around 95% accuracy in estimating tendon tensions in a continuum robot with general tendon positioning and axial stretch in its tendons for all of the trials and experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call