Abstract

Air spindles in ultra precision machines produce rotational movements for the cutting tool or work piece. The common combination of a simple cylindrical rotor and stator is the design for most spindles. If the length of such a spindle is longer than usual, it will deviate from its stable situation and start vibrating during operation, especially in high rotational speeds. In order to overcome the vibration problem, one of possible solutions is the application of a spherical rotor and stator. The manufacturing and assembly limitations do not allow obeying the spherical shape exactly. Thus, the design has been committed according to a quasi-sphere. This form of the rotor will be more stable. The subsequent result of stability improvement will be less air pressure and power consumption. There are some specific characterizations of the spindle which must be calculated for the spherical case. For this purpose a computer model of the object was made. Then, the model was put under finite element study to find the best air pressure and air flow velocity condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.